티스토리 뷰
1 http://stackoverflow.com/questions/1768197/bounding-ellipse/1768440#1768440 (stack)
2 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.7691 (document)
3 https://gist.github.com/Gabriel-p/4ddd31422a88e7cdf953 (python mvee code)
$ {(x_i -c)}^TE{(x_i -c)} \leq 1 \hspace{10mm} i=1,...,m $
$Vol(\varepsilon) = {v_0 \over \sqrt{det(E)}} = v_0 det(E^{-1})^{1 \over 2}$
document 를 참조하면 center form 을 이용하여 convex function 으로 변환 후 이를 이용하여
Largrange dual problem 을 가정하여 최적화를 진행하는 방식입니다. 세부 수식은 2 document 를 참조하셔야 됩니다.
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import cv2
def mvee(points, tol = 0.01):
"""
Finds the ellipse equation in "center form"
(x-c).T * A * (x-c) = 1
"""
N, d = points.shape
Q = np.column_stack((points, np.ones(N))).T
err = tol+1.0
u = np.ones(N)/N
while err > tol:
# assert u.sum() == 1 # invariant
X = np.dot(np.dot(Q, np.diag(u)), Q.T)
M = np.diag(np.dot(np.dot(Q.T, la.inv(X)), Q))
jdx = np.argmax(M)
step_size = (M[jdx]-d-1.0)/((d+1)*(M[jdx]-1.0))
new_u = (1-step_size)*u
new_u[jdx] += step_size
err = la.norm(new_u-u)
u = new_u
c = np.dot(u,points)
A = la.inv(np.dot(np.dot(points.T, np.diag(u)), points)
- np.multiply.outer(c,c))/d
return A, c
img = cv2.imread('/home/roadcom/Downloads/partial_ellipse.jpeg', cv2.IMREAD_GRAYSCALE)
ret, th = cv2.threshold(img,0,255,cv2.THRESH_BINARY + cv2.THRESH_OTSU)
conts, _ = cv2.findContours(th,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
# max bloc filter
max_blob_id = np.argmax([cv2.contourArea(p) for p in conts])
A, centroid = mvee(np.squeeze(conts[max_blob_id]))
U, D, V = la.svd(A)
# x, y radii.
rx, ry = 1./np.sqrt(D)
major, minor = max(rx,ry), min(rx,ry)
cxy = tuple(np.int0(centroid))
aixs = tuple(np.int0([major, minor]))
arcsin = -1. * np.rad2deg(np.arcsin(V[0][0]))
arccos = np.rad2deg(np.arccos(V[0][1]))
# Orientation angle (with respect to the x axis counterclockwise).
alpha = arccos if arcsin > 0. else -1. * arccos
rst_img = cv2.ellipse(img.copy(), cxy, aixs, alpha, 0, 360,(255,255,255),3)
B, G, R = cv2.split(rst_img)
matplot_img = cv2.merge([R,G,B])
fig, axs = plt.subplots(1,2, figsize=(16,8))
axs[0].imshow(img, interpolation='quadric')
axs[0].set_title('Origin[B,G,R]')
axs[0].axis('off')
axs[1].imshow(matplot_img, interpolation='quadric')
axs[1].set_title('MVEE')
axs[1].axis('off')
'영상처리' 카테고리의 다른 글
Digital watermarking (네이버웹툰 캡처 추적) #1 (0) | 2021.09.11 |
---|---|
[ Lagrange multiplier ] 두 타원 간의 최소거리 (0) | 2017.11.24 |
[ RANSAC ] 타원 피팅 (fit ellipse using ransac) (1) | 2017.08.03 |
[ 최소자승법 ] 원, 타원 측정 (7) | 2017.07.23 |
댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- gPRC
- 캡처방지
- DW
- keras
- Digital watermarking
- tensorflow serving
- SvD
- 네이버웹툰
- backpropagation
- flask serving
- dct
- Residual Block
- numpy
- DWT-DCT
- implementation
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
글 보관함